Psycho-emotional state of dogs with different autonomic nervous system tones under acute stress

Keywords: dogs, autonomic status, sympathicotonia, vagotonia, normotonia, psycho-emotional state, stress, anxiety, adaptation

Abstract

The problem of stress resistance in dogs is an important aspect of modern veterinary medicine and ethology, as it directly affects the health, behavior, and performance of animals in service, sport, and therapeutic activities. The autonomic nervous system (ANS) plays a key role in regulating the psycho-emotional state, determining the speed and intensity of responses to stress stimuli. The aim of the study was to determine the specific effects of different types of autonomic tone on the dynamics of the psycho-emotional state of dogs under conditions of acute stress and ordinary anxiety, and to identify the mechanisms of ANS involvement in the formation of behavioral responses. The study was conducted on 30 dogs with different autonomic statuses. The psycho-emotional state was assessed using the modified FAS scale (FAS-M) in dynamics. It was found that normotonic dogs under acute stress exhibited a moderate increase in psycho-emotional state, indicating balanced reactivity and adaptive capacity. Vagotonics had minimal baseline values (0.3–1.5 units), but in response to acute stress they sharply increased (up to 2.5 units), followed by a rapid decline by the end of the experiment (1.3 units), indicating unstable adaptation dynamics. Sympathicotonics showed consistently high excitability levels (1.9–2.3 units) and the most pronounced stress response (up to 3.1 units), maintaining elevated anxiety even during ordinary anxiety days (2.5–2.8 units), which reflects their low adaptability. Analysis of the influence of individual ANS branches showed the dominance of sympathicotonia at the initial stages (0.4 units on the first day) with a gradual decline to 0.04–0.31 units in the following days, while vagotonia displayed a phase-like pattern: from moderate values at the start (0.22–0.36 units) to suppression on days 2–3 (0–0.02 units), and a renewed increase on day 5 (0.46 units). Thus, the type of autonomic tone is a determining factor in shaping the stress response in dogs. This suggests that autonomic tone type can be considered a prognostic marker of individual stress resistance and a basis for developing practical correction methods in veterinary practice.

Downloads

Download data is not yet available.

References

Amaya, V., Paterson, M. B. A., Descovich, K., & Phillips, C. J. C. (2020). Effects of Olfactory and Auditory Enrichment on Heart Rate Variability in Shelter Dogs. Animals, 10(8). https://doi.org/10.3390/ani10081385

Beerda, B., Schilder, M. B. H., Van Hooff, J., de Vries, H. W., & Mol, J. A. (2000). Behavioural and hormonal indicators of enduring environmental stress in dogs. Animal Welfare, 9(1), 49–62. https://doi.org/10.1017/S0962728600022247

Dickinson, S., & Feuerbacher, E. N. (2025). Frustration and its impact on search and rescue canines. Frontiers in Veterinary Science, 12, 1546412. https://doi.org/10.3389/FVETS.2025.1546412/BIBTEX

Döring, D., Roscher, A., Scheipl, F., Küchenhoff, H., & Erhard, M. H. (2009). Fear-related behaviour of dogs in veterinary practice. Veterinary Journal, 182(1), 38–43. https://doi.org/10.1016/J.TVJL.2008.05.006

Flint, H. E., Weller, J. E., Parry-Howells, N., Ellerby, Z. W., McKay, S. L., & King, T. (2024). Evaluation of indicators of acute emotional states in dogs. Scientific Reports, 14(1), 6406. https://doi.org/10.1038/s41598-024-56859-9

Gatehouse, E., Bremhorst, A., Denenberg, S., & Loftus, L. (2025). Assessment of a behavioral scale for the measurement of fear, anxiety and stress in dogs visiting the veterinary practice. Journal of Veterinary Behavior, 81, 58–70. https://doi.org/https://doi.org/10.1016/j.jveb.2025.08.008

Gutiérrez, J., Gazzano, A., Pirrone, F., Sighieri, C., & Mariti, C. (n.d.). Investigating the role of prolactin as a potential biomarker of stress in castrated male domestic dogs. Animals. 2019; 9: 676. https://doi.org/10.3390/ani9090676

Hauser, H., Campbell, S., Korpivaara, M., Stefanovski, D., Quinlan, M., & Siracusa, C. (2020). In-hospital administration of dexmedetomidine oromucosal gel for stress reduction in dogs during veterinary visits: A randomized, double-blinded, placebo-controlled study. Journal of Veterinary Behavior, 39, 77–85. https:/doi.org/10.1016/j.jveb.2020.05.002

Hekman, J. P., Karas, A. Z., & Sharp, C. R. (2014). Psychogenic Stress in Hospitalized Dogs: Cross Species Comparisons, Implications for Health Care, and the Challenges of Evaluation. Animals : An Open Access Journal from MDPI, 4(2), 331–347. https://doi.org/10.3390/ANI4020331

Kartashova, I. A., Ganina, K. K., Karelina, E. A., & Tarasov, S. A. (2021). How to evaluate and manage stress in dogs–a guide for veterinary specialist. Applied Animal Behaviour Science, 243, 105458. https://doi.org/10.1016/j.applanim.2021.105458

Kim, S. A., Borchardt, M. R., Lee, K., Stelow, E. A., & Bain, M. J. (2022). Effects of trazodone on behavioral and physiological signs of stress in dogs during veterinary visits: a randomized double-blind placebo-controlled crossover clinical trial. Journal of the American Veterinary Medical Association, 260(8), 876–883. https://doi.org/10.2460/JAVMA.20.10.0547

King, T., Flint, H. E., Hunt, A. B. G., Werzowa, W. T., & Logan, D. W. (2022). Effect of Music on Stress Parameters in Dogs during a Mock Veterinary Visit. Animals, 12(2), 187. https://doi.org/10.3390/ANI12020187/S1

Koolhaas, J. M., Bartolomucci, A., Buwalda, B., de Boer, S. F., Flügge, G., Korte, S. M., Meerlo, P., Murison, R., Olivier, B., Palanza, P., Richter-Levin, G., Sgoifo, A., Steimer, T., Stiedl, O., van Dijk, G., Wöhr, M., & Fuchs, E. (2011). Stress revisited: A critical evaluation of the stress concept. Neuroscience & Biobehavioral Reviews, 35(5), 1291–1301. https://doi.org/10.1016/j.neubiorev.2011.02.003

Koskela, A., Törnqvist, H., Somppi, S., Tiira, K., Kykyri, V.-L., Hänninen, L., Kujala, J., Nagasawa, M., Kikusui, T., & Kujala, M. V. (2024). Behavioral and emotional co-modulation during dog–owner interaction measured by heart rate variability and activity. Scientific Reports 2024 14:1, 14(1), 1–12. https://doi.org/10.1038/s41598-024-76831-x

Mârza, S. M., Munteanu, C., Papuc, I., Radu, L., Diana, P., & Purdoiu, R. C. (2024). Behavioral, Physiological, and Pathological Approaches of Cortisol in Dogs. Animals : An Open Access Journal from MDPI, 14(23), 3536. https://doi.org/10.3390/ANI14233536

Matsushita, S., Nagasawa, M., & Kikusui, T. (2022). Autonomic nervous system responses of dogs to human-dog interaction videos. Plos One, 17(11), e0257788. https://doi.org/10.1371/journal.pone.0257788

Mercier, P., Honeckman, L., Jokela, F., Dunham, A. E., & Overall, K. L. (2023). Using standardized scales to assess fear at veterinary visits: Intra- and inter-rater reliability. Journal of Veterinary Behavior, 62, 12–17. https://doi.org/10.1016/j.jveb.2023.02.004

Overall, K. (2013). Manual of Clinical Behavioral Medicine for Dogs and Cats-E-Book. Elsevier Health Sciences. 760–763. ISBN: 978-0-323-00890-7

Salgirli Demirbas, Y., Isparta, S., Saral, B., Keskin Yılmaz, N., Adıay, D., Matsui, H., Töre-Yargın, G., Musa, S. A., Atilgan, D., Öztürk, H., Kul, B. C., Şafak, C. E., Ocklenburg, S., & Güntürkün, O. (2023). Acute and chronic stress alter behavioral laterality in dogs. Scientific Reports, 13(1), 4092. https://doi.org/10.1038/s41598-023-31213-7

Somppi, S., Törnqvist, H., Koskela, A., Vehkaoja, A., Tiira, K., Väätäjä, H., Surakka, V., Vainio, O., & Kujala, M. V. (2022). Dog-Owner Relationship, Owner Interpretations and Dog Personality Are Connected with the Emotional Reactivity of Dogs. Animals : An Open Access Journal from MDPI, 12(11). https://doi.org/10.3390/ani12111338

Stanford, T. L. (1981). Behavior of dogs entering a veterinary clinic. Applied Animal Ethology, 7(3), 271–279. https:/doi.org/10.1016/0304-3762(81)90083-3

Stephen, J. M., & Ledger, R. A. (2005). An Audit of Behavioral Indicators of Poor Welfare in Kenneled Dogs in the United Kingdom. Journal of Applied Animal Welfare Science, 8(2), 79–95. https://doi.org/10.1207/s15327604jaws0802_1

Teo, J. T., Johnstone, S. J., Römer, S. S., & Thomas, S. J. (2022). Psychophysiological mechanisms underlying the potential health benefits of human-dog interactions: A systematic literature review. International Journal of Psychophysiology, 180, 27–48. https://doi.org/10.1016/J.IJPSYCHO.2022.07.007

Tóth, A., & Dobolyi, Á. (2025). Prolactin in sleep and EEG regulation: New mechanisms and sleep-related brain targets complement classical data. Neuroscience & Biobehavioral Reviews, 169, 106000. https://doi.org/10.1016/j.neubiorev.2024.106000

Wehrwein, E. A., Orer, H. S., & Barman, S. M. (2016). Overview of the Anatomy, Physiology, and Pharmacology of the Autonomic Nervous System. Comprehensive Physiology, 6(3), 1239–1278. https://doi.org/10.1002/J.2040-4603.2016.TB00714.X


Abstract views: 12
PDF Downloads: 5
Published
2025-11-27
How to Cite
Redko, V. I., Bobrytska, O. M., VodopianovaL. А., & SovikК. М. (2025). Psycho-emotional state of dogs with different autonomic nervous system tones under acute stress. Veterinary Science, Technologies of Animal Husbandry and Nature Management, (12), 118-125. https://doi.org/10.31890/vttp.2025.12.10