Physiological basis of nervous-humoral regulation in reproductive function of female dogs (review)
Abstract
The article contains up-to-date information on the regulation of the reproductive function of female dogs. The synergy of the nervous and humoral systems during the reproductive cycle in female dogs is shown and described in details. Reproduction is primarily regulated by the hypothalamic-pituitary-gonadal axis. The leading role in which is played by the hypothalamus, which produces gonadotropin-releasing hormone. In turn, the ovaries produce estrogens, which affect the development, maintenance of sexual characteristics, regulation of ovulation cycles and maintenance of pregnancy. Progesterone, which is also produced in the ovaries by the corpus luteum, prepares the endometrium to accept a fertilized egg and supports pregnancy.
In female dogs, the neuro-humoral regulation of reproductive function has its essential differences from other mammals. Reproductive behaviour is well described in most species of animals, but the basic physiological foundations of sexual behavior have been neglected by researchers. Now it is becoming clear that health, feeding and environment can affect the reproductive function of dogs. Unlike other domestic animals, female dogs do not have an increase in oestrogen content during pregnancy and childbirth, and luteal regression occurs despite an increase in the content of pituitary hormones. Elevated progesterone levels are also observed in pseudopregnancy. Thus, the progesterone level is widely used as a clinical biomarker in female dogs’ reproductive management. In addition, quite significant individual variations in the level of sex hormones in the body have been established in female dogs. In female dogs, the degree of variation in circulating progesterone levels is associated with multiple and variable number of ovulations and corpus luteum. Elderly female dogs should be able to synthesize progesterone at a higher efficiency than young ones, suggesting that luteal endocrine activity changes from juvenile to adulthood as it undergoes maturation. Progesterone also belongs to the group of neurosteroids and can be metabolized in all parts of the central nervous system, due to this, it has neuromodulatory, neuroprotective and neurogenic effects.
Downloads
References
Alvares, F., Sillero-Zubiri, C., Jhala, Y. V, Viranta, S., Koepfli, K.-P., Godinho, R., Krofel, M., Bogdanowicz, W., Hatlauf, J., Campbell, L., Werhahn, G., Senn, H., & Kitchener, A. (2019). Old World Canis spp. With taxonomic ambiguity: Workshop conclusions and recommendations. Cibio, May, 1–8. http://www.canids.org/Old_world_canis_taxonomy_workshop.pdf
Baalbergen, T. (2021). Ovulation timing in the bitch: Conception rate and influencing factors in 1401 estrus cycles. (Master’s thesis)
Bathgate, R. A. D., Halls, M. L., van der Westhuizen, E. T., Callander, G. E., Kocan, M., & Summers, R. J. (2013). Relaxin Family Peptides and Their Receptors. Physiological Reviews, 93(1), 405–480. https://doi.org/10.1152/physrev.00001.2012
Bergfelt, D. R., Peter, A. T., & Beg, M. A. (2014). Relaxin: A hormonal aid to diagnose pregnancy status in wild mammalian species. Theriogenology, 82(9), 1187–1198. https://doi.org/10.1016/j.theriogenology.2014.07.030
Bischoff, T. L. W. (1845). Entwicklungsgeschichte des hunde-eies. F. Vieweg und sohn.
Colvin, C. W., & Abdullatif, H. (2013). Anatomy of female puberty: The clinical relevance of developmental changes in the reproductive system. Clinical Anatomy, 26(1), 115–129.https://doi.org/https:/doi.org/10.1002/ca.22164
Concannon, P. W. (2012). Research challenges in endocrine aspects of canine ovarian cycles. Reproduction in Domestic Animals, 47, 6–12.https://doi.org/10.1111/rda.12121
Concannon, P. W. (2009). Endocrinologic control of normal canine ovarian function. Reproduction in Domestic Animals. 44(2), 3–15. https://doi.org/10.1111/j.1439-0531.2009.01414.x
Concannon, P. W. (2011). Reproductive cycles of the domestic bitch. Animal Reproduction Science, 124. 3-4, 200–210. https://doi.org/10.1016/j.anireprosci.2010.08.028
Concannon, P. W, Castracane, V. D., Temple, M., & Montanez, A. (2009). Endocrine control of ovarian function in dogs and other carnivores. Animal Reproduction, 6, 172–193. https://api.semanticscholar.org/CorpusID:43599259
Concannon, P., Tsutsui, T., & Shille. (2001). Embryo development, hormonal requirements and maternal responses during canine pregnancy. Journal of Reproduction and Fertility. Supplement, 57, 169–179. https://api.semanticscholar.org/CorpusID:28793627
Conley, A. J., Gonzales, K. L., Erb, H. N., & Christensen, B. W. (2023). Progesterone Analysis in Canine Breeding Management. Veterinary Clinics: Small Animal Practice, 53(5), 931–949. https://doi.org/10.1016/j.cvsm.2023.05.007
Cooper, C. E., & Withers, P. C. (2008). Animal Physiology. Encyclopedia of Ecology: Volume 1-4, Second Edition, 3, 228–237.https://doi.org/10.1016/B978-0-444-63768-0.00456-X
Creevy, K. E., Austad, S. N., Hoffman, J. M., O’Neill, D. G., & Promislow, D. E. L. (2016). The companion dog as a model for the longevity dividend. Cold Spring Harbor Perspectives in Medicine, 6(1). https://doi.org/10.1101/cshperspect.a026633
da Silva, M. L. M., de Oliveira, R. P. M., & de Oliveira, F. F. (2020). Evaluation of sexual behavior and reproductive cycle of bitches. Brazilian Journal of Development, 6(10), 84186–84196. https://doi.org/10.34117/bjdv6n10-743
de Carvalho Papa, P., & Kowalewski, M. P. (2020). Factors affecting the fate of the canine corpus luteum: Potential contributors to pregnancy and non-pregnancy. Theriogenology. https://doi.org/10.1016/j.theriogenology.2020.01.081
De Gier, J., Beijerink, N. J., Kooistra, H. S., & Okkens, A. C. (2008). Physiology of the canine anoestrus and methods for manipulation of its length. Reproduction in Domestic Animals, 43, 157–164.https://doi.org/10.1111/j.1439-0531.2008.01156.x
Dieleman, S. J., & Schoenmakers, H. J. N. (1979). Radioimmunoassays to determine the presence of progesterone and estrone in the starfish Asterias rubens. General and Comparative Endocrinology, 39(4), 534–542. https://doi.org/10.1016/0016-6480(79)90242-9
Diessler, M. E., Hernández, R., Gomez Castro, G., & Barbeito, C. G. (2023). Decidual cells and decidualization in the carnivoran endotheliochorial placenta. Frontiers in Cell and Developmental Biology, 11, 1134874. https://doi.org/10.3389/fcell.2023.1134874
Feldman, E. C., Nelson, R. W., Reusch, C., & Scott-Moncrieff, J. C. (2014). Canine and feline endocrinology-e-book. Elsevier health sciences.
Gobello, C. (2007). New GnRH analogs in canine reproduction. Animal Reproduction Science, 100(1–2), 1–13.https://doi.org/10.1016/j.anireprosci.2006.08.024
Gobello, C. (2021). Revisiting canine pseudocyesis. Theriogenology, 167, 94–98.https://doi.org/10.1016/j.theriogenology.2021.03.014
Graubner, F. R., Gram, A., Kautz, E., Bauersachs, S., Aslan, S., Ağaoğlu, A. R., Boos, A., & Kowalewski, M. P. (2017). Uterine responses to early pre-attachment embryos in the domestic dog and comparisons with other domestic animal species. Biology of Reproduction, 97, 197–216. Doi: https://doi.org/10.1093/biolre%2Fiox063
M., Hori, T., Kawakami, E., & Tsutsui, T. (2000). Plasma LH and Progesterone Levels before and after O vulation and Observation of Ovarian Follicles by Ultrasonographic Diagnosis System in Dogs. Journal of Veterinary Medical Science, 62(3), 243–248. https://doi.org/10.1292/jvms.62.243
Hatoya, S., Torii, R., Kumagai, D., Sugiura, K., Kawate, N., Tamada, H., Sawada, T., & Inaba, T. (2003). Expression of estrogen receptor α and β genes in the mediobasal hypothalamus, pituitary and ovary during the canine estrous cycle. Neuroscience Letters, 347(2), 131–135.https://doi.org/10.1016/s0304-3940(03)00639-6
Holesh, J. E., Bass, A. N., & Lord, M. (2023). Physiology, Ovulation. StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK441996/
Hollinshead, F. K., & Hanlon, D. W. (2019). Normal progesterone profiles during estrus in the bitch: A prospective analysis of 1420 estrous cycles. Theriogenology, 125, 37–42. https://doi.org/10.1016/j.theriogenology.2018.10.018
Hong, G. K., Payne, S. C., & Jane, J. A. (2016). Anatomy, physiology, and laboratory evaluation of the pituitary gland. Otolaryngologic Clinics of North America, 49(1), 21–32. https://doi.org/10.1016/j.otc.2015.09.002
Ilahi, S., & Ilahi, T. B. (2022). Anatomy, Adenohypophysis (Pars Anterior, Anterior Pituitary). StatPearls Publishing, Treasure Island (FL). http://europepmc.org/abstract/MED/30085581
Kowalewski, M. P. (2014). Luteal regression vs. prepartum luteolysis: Regulatory mechanisms governing canine corpus luteum function. Reproductive Biology, 14(2), 89–102.https://doi.org/10.1016/J.REPBIO.2013.11.004
Kowalewski, M. P. (2017). Regulation of Corpus Luteum Function in the Domestic Dog ( Canis familiaris ) and Comparative Aspects of Luteal Function in the Domestic Cat ( Felis catus ). Doi: https://doi.org/10.1007/978-3-319-43238-0_8
Kowalewski, M. P. (2018). Selected Comparative Aspects of Canine Female Reproductive Physiology. Encyclopedia of Reproduction, 682–691. https://doi.org/10.1016/B978-0-12-809633-8.20527-X
Kowalewski, M. P. (2023a). Advances in understanding canine pregnancy: Endocrine and morpho-functional regulation. Reproduction in Domestic Animals, 58 Suppl 2(S2), 163–175. https://doi.org/10.1111/RDA.14443
Kowalewski, M. P. (2023b). Advances in understanding canine pregnancy: Endocrine and morpho‐functional regulation. Reproduction in Domestic Animals, 58(S2), 163–175.https://doi.org/10.1111/RDA.14443
Kowalewski, M. P., Gram, A., Kautz, E., & Graubner, F. R. (2015). The Dog: Nonconformist, Not Only in Maternal Recognition Signaling. Advances in Anatomy, Embryology, and Cell Biology, 216, 215–237. https://doi.org/10.1007/978-3-319-15856-3_11
Kowalewski, M. P., Michel, E., Gram, A., Boos, A., Guscetti, F., Hoffmann, B., Aslan, S., & Reichler, I. (2011). Luteal and placental function in the bitch: Spatio-temporal changes in prolactin receptor (PRLr) expression at dioestrus, pregnancy and normal and induced parturition. Reproductive Biology and Endocrinology, 9.https://doi.org/10.1186/1477-7827-9-109
Kulus, M., Wieczorkiewicz, M., Kulus, J., Skowroński, M. T., Kranc, W., Bukowska, D., Wąsiatycz, G., Kempisty, B., & Antosik, P. (2021). Potential of aquaporins and connexins in dogs and their relation to the reproductive tract. Medycynawet, 77, 65–71.http://dx.doi.org/10.21521/mw.6491
Lindh, L., Kowalewski, M. P., Günzel-Apel, A.-R., Goericke-Pesch, S., Myllys, V., Schuler, G., Dahlbom, M., Lindeberg, H., & Peltoniemi, O. A. T. (2022). Ovarian and uterine changes during the oestrous cycle in female dogs. Reproduction, Fertility and Development, 35(4), 321–337.https://doi.org/10.1071/rd22177
Lizneva, D., Rahimova, A., Kim, S. M., Atabiekov, I., Javaid, S., Alamoush, B., Taneja, C., Khan, A., Sun, L., Azziz, R., Yuen, T., & Zaidi, M. (2019). FSH beyond fertility. Frontiers in Endocrinology, 10(MAR), 438103. https://doi.org/10.3389/FENDO.2019.00136/BIBTEX
Marinelli, L., Rota, A., Carnier, P., Da Dalt, L., & Gabai, G. (2009). Factors affecting progesterone production in corpora lutea from pregnant and diestrous bitches. Animal Reproduction Science, 114(1–3), 289–300.https://doi.org/10.1016/J.ANIREPROSCI.2008.10.001
Marques, P., Skorupskaite, K., Rozario, K. S., Anderson, R. A., & George, J. T. (2022). Physiology of GnRH and Gonadotropin Secretion. Endotext. https://www.ncbi.nlm.nih.gov/books/NBK279070/
Martin, N., Höftmann, T., Politt, E., Hoppen, H. O., Sohr, M., Günzel-Apel, A. R., & Einspanier, A. (2009). Morphological examination of the corpora lutea from pregnant bitches treated with different abortifacient regimes. Reproduction in Domestic Animals, 44(SUPPL. 2), 185–189.https://doi.org/10.1111/J.1439-0531.2009.01430.X
Milani, C., Rota, A., Olsson, U., Paganotto, A., & Holst, B. S. (2021). Serum concentration of mineralocorticoids, glucocorticoids, and sex steroids in peripartum bitches. Domestic Animal Endocrinology, 74, 106558. Doi: 10.1016/j.domaniend.2020.106558
Nedresky, D., & Singh, G. (2022). Physiology, Luteinizing Hormone. StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK539692/
Nowak, M., Boos, A., & Kowalewski, M. P. (2018). Luteal and hypophyseal expression of the canine relaxin (RLN) system during pregnancy: Implications for luteotropic function. PloS One, 13(1). https://doi.org/10.1371/JOURNAL.PONE.0191374
Nowak, M., Gram, A., Boos, A., Aslan, S., Ay, S. S., Önyay, F., & Kowalewski, M. P. (2017). Functional implications of the utero-placental relaxin (RLN) system in the dog throughout pregnancy and at term. Reproduction, 154 4, 415–431. https://doi.org/10.1530/REP-17-0135
Okafor, I. A., Okpara, U. D., & Ibeabuchi, K. C. (2022). The Reproductive Functions of the Human Brain Regions: A Systematic Review. Journal of Human Reproductive Sciences, 15(2), 102.https://doi.org/10.4103/JHRS.JHRS_18_22
Onclin, K., Murphy, B., & Verstegen, J. P. (2002). Comparisons of estradiol, LH and FSH patterns in pregnant and nonpregnant beagle bitches Theriogenology. 57, 1957–1972. https://doi.org/10.1016/S0093-691X(02)00644-1
Papa, P. C., & Hoffmann, B. (2011). The Corpus Luteum of the Dog: Source and Target of Steroid Hormones? Reproduction in Domestic Animals, 46(4), 750–756. https://doi.org/10.1111/J.1439-0531.2010.01749.X
Park, C. J., Lin, P.-C., Zhou, S., Barakat, R., Bashir, S. T., Choi, J. M., Cacioppo, J. A., Oakley, O. R., Duffy, D. M., & Lydon, J. P. (2020). Progesterone receptor serves the ovary as a trigger of ovulation and a terminator of inflammation. Cell Reports, 31(2). https://doi.org/10.1016/j.celrep.2020.03.060
Pereira, M. M., Mainigi, M., & Strauss III, J. F. (2021). Secretory products of the corpus luteum and preeclampsia. Human Reproduction Update, 27(4), 651–672. https://doi.org/10.1093/humupd/dmab003
Rance, N. E., Krajewski, S. J., Smith, M. A., Cholanian, M., & Dacks, P. A. (2010). Neurokinin B and the hypothalamic regulation of reproduction. Brain Research, 1364, 116–128. https://doi.org/10.1016/j.brainres.2010.08.059
Reynaud, K., Saint-Dizier, M., Tahir, M. Z., Havard, T., Harichaux, G., Labas, V., Thoumire, S., Fontbonne, A., Grimard, B., & Chastant‐Maillard, S. (2015). Progesterone Plays a Critical Role in Canine Oocyte Maturation and Fertilization1. Biology of Reproduction. https://doi.org/10.1095/biolreprod.115.130955
Reynaud, K., Saint-Dizier, M., Thoumire, S., & Chastant-Maillard, S. (2020). Follicle growth, oocyte maturation, embryo development, and reproductive biotechnologies in dog and cat. Clinical Theriogenology, 12(3), 189–203. https://clinicaltheriogenology.net/index.php/CT/article/view/9229
Rougier, C., Hieronimus, S., Panaïa-Ferrari, P., Lahlou, N., Paris, F., & Fenichel, P. (2019). Isolated follicle-stimulating hormone (FSH) deficiency in two infertile men without FSH β gene mutation: Case report and literature review. Annales d’Endocrinologie, 80(4), 234–239. https://doi.org/10.1016/J.ANDO.2019.06.002
Singh, L. K., Bhimte, A., Pipelu, W., Mishra, G. K., & Patra, M. K. (2018). Canine pseudopregnancy and its treatment strategies. Depression, 17(19), 20.
Singh, M., Su, C., & Ng, S. (2013). Non-genomic mechanisms of progesterone action in the brain. Frontiers in Neuroscience, 7(7 SEP), 60052. https://doi.org/10.3389/FNINS.2013.00159/BIBTEX
Verstegen-Onclin, K., & Verstegen, J. (2008). Endocrinology of pregnancy in the dog: a review. Theriogenology, 70(3), 291–299. https://doi.org/10.1016/j.theriogenology.2008.04.038
Wang, H.-Q., Zhang, W.-D., Yuan, B., & Zhang, J.-B. (2021). Advances in the regulation of mammalian follicle-stimulating hormone secretion. Animals, 11(4), 1134. https://doi.org/10.3390/ani11041134
Wang, H. Q., Zhang, W. Di, Yuan, B., & Zhang, J. B. (2021). Advances in the Regulation of Mammalian Follicle-Stimulating Hormone Secretion. Animals : An Open Access Journal from MDPI, 11(4). https://doi.org/10.3390/ANI11041134
Widayati, D. T., & Pangestu, M. (2020). Effect of follicle-stimulating hormone on Bligon goat oocyte maturation and embryonic development post in vitro fertilization. Veterinary World, 13(11), 2443–2446. https://doi.org/10.14202/VETWORLD.2020.2443-2446
Wijewardana, V., Sugiura, K., Wijesekera, D. P. H., Hatoya, S., Nishimura, T., Kanegi, R., Ushigusa, T., & Inaba, T. (2015). Effect of ovarian hormones on maturation of dendritic cells from peripheral blood monocytes in dogs. Journal of Veterinary Medical Science, 77(7), 771–775. https://doi.org/10.1292/jvms.14-0558
Abstract views: 245 PDF Downloads: 119


