Дослідження сорбційних та дезінфікуючих властивостей осушувача підстилки «Міказез»
Анотація
В статті наведені результати експериментальних досліджень сорбційних та дезінфікуючих властивостей осушувача підстилки «Мікадез». In vitro на тест-культурах мікроорганізмів (Echerichia coli, Staphilococcus aureus) встановлена висока сорбційна та протимікробна дезінфікаційна властивості.
Завантаження
Посилання
Bondarenko, S. P. (2002). Polnaya enciklopediya pticevodstva. Donetsk: AST Stalker. [in Ukrainian]
Chaudhry, Q., Scotter, M., Blackburn, J., Ross, B., Boxall, A., Castle, L., Aitken, R., & Watkins, R. (2008). Applications and implications of nanotechnologies for the food sector. Food Additives & Contaminants, 25(3), 241-258, http://dx.DOI.org/10.1080/02652030701744538.
Dekkers, S., Krystek, P., Peters, R. J. B., Lankveld, D. P. K., Bokkers, B. G. H., van Hoeven-Arentzen, P. H., Bouwmeester, H., & Oomen, A. G. (2011). Presence and risks of nanosilica in food products. Nanotoxicology, 5(3), 393-405. http://dx.DOI.org/10.3109/17435390.2010.519836
He, H., Yuan, D., Gao, Zh., Xiao, D., He, H., Dai, H., Peng, J., & Li, N. (2014). Mixed hemimicelles solid-phase extraction based on ionic liquid-coated Fe3 O4/SiO2 nanoparticles for the determination of flavonoids in bio-matrix samples coupled with high performance liquid chromatography. Journal of Chromatography, 1324, 78–85. http://dx.DOI.org/10.1016/j.chroma.2013.11.021.
Jacobs, R., van der Voet, H., & ter Braak, C. J. F. (2015). Integrated probabilistic risk assessment for nanoparticles: the case of nanosilica in food. J Nanopart Res, 17, 251. https://doi.org/10.1007/s11051-015-2911-y.
Kozitsina, A. N., Malysheva, N. N., Utepova, I. A., Glazyrina, Y. A., Matern,A. I., Brainina, K. Z., & Chupakhin, O. N. (2015). An enzymefree electrochemical method for the determination of E. coliusing Fe3 O4 nanocomposites with a SiO2 shell modified by ferrocene. Journal of Analytical Chemistry, 70, 540-545. http://dx.DOI.org/10.1134/S1061934815050068.
Liulin, P. (2020). Viability of oocist eimeria of turkeys under exposure to Mycadez. Veterinary Science, Technologies of Animal Husbandry and Nature Management, (6), 52-55. https://doi.org/10.31890/vttp.2020.06.09.
Maynard, A. (2014). Old materials, new challenges? Nature Nanotech, 9, 658–659. https://doi.org/10.1038/nnano.2014.196
Melnik, V. O. (2009). Ekologitsni problemi sutsasnogo ptachivnitsva. Ptachivnitsvo: mizhvid. temat. nauk. sbirnik IP UAAN, 63, 3-17. [in Ukrainian]
Meretin, R. N. (2019). Sorption properties of coal-mineral sorbent based on rice husk in relation to heavy metal ions. Sorbtsionnye I Khromatograficheskie Protsessy, 19(6), 703-710. https://doi.org/10.17308/sorpchrom.2019.19/2232.
Paliy, A. P., Ishchenko, K. V., Marchenko, M. V., Paliy, A. P., & Dubin, R. A. (2018). Effectiveness of aldehyde disinfectant against the causative agents of tuberculosis in domestic animals and birds. Ukrainian Joumal of Ecology, 8(1), 845-850. http://dx.doi.org/10.15421/2018 283.
Paliy, A., Zavgorodniy, A., Stegniy, B., & Gerilovych, A. (2015). A Study of the Efficiency of Modern Domestic Disinfectants in the System of TB Control Activities. Agricultural Science and Practice, 2(2), 26-31. https://doi.org/10.15407/agrisp2.02.026.
Peters, R., Kramer, E., Oomen, A. G., Rivera, Z. E., Oegema, G., Tromp, P. C., Fokkink, R., Rietveld, A., Marvin, H. J., Weigel, S., Peijnenburg, A. A., & Bouwmeester, H. (2012). Presence of nano-sized silica during in vitro digestion of foods containing silica as a food additive. ACS nano, 6(3), 2441–2451. https://doi.org/10.1021/nn204728k.
Pryhod'ko, Ju. O., & Mazannyj, O. (2013). Systema integrovanogo zahystu tvaryn vid parazytiv v Ukrai'ni. Zdorov'ja tvaryn ta liky, 12, 18-19. [in Ukrainian]
Reshetnikova, I. S., Aleksenko, S. S., & Shtykov, S. N. (2019). Effect of modifier nature on the preconcentration efficiency of rutin and quercetin on the magnetite nanoparticles. Analytics and Control, 23(2), 265-273. https://journals.urfu.ru/index.php/analitika/article/view/3916. [in Russian]
Sodipo, B. K., & Aziz, A. A. (2016). Recent advances in synthesis and surface modification of superparamagnetic iron oxide nanoparticles with silica. Journal of Magnetism and Magnetic Materials, 416, 275–291. http://dx.doi.org/10.1016/j. jmmm.2016.05.019.
Teryshin, V. A., Kruglova, O. V., Mogilenets, E. I., & Merkulova, N. F. (2016). Effectivity of silicon sorbent in infectious practice. Infekc. Bolezni, 14(2), 47–54. https://doi.org/10.20953/1729-9225-2016-2-47-54. [in Russian]
Tolmacheva, V. V., Apyari, V. V., Kochuk, E. V., & Dmitrienko, S. G. (2016). Magnetic sorbents based on nanoparticles of iron oxides for the isolation and concentration of organic compounds. Journal of Analytical Chemistry, 71(4), 321-338. http://dx.doi.org/10.1134/S1061934816040079.
van Kesteren, P. C. E., Cubadda, F., Bouwmeester, H., van Eijkeren, J. C. H., Dekkers, S., de Jong, W. H., & Oomen, A. G. (2015). Novel insights into the risk assessment of the nanomaterial synthetic amorphous silica, additive E551, in food. Nanotoxicology, 9(4), 442-452. http://dx.doi.org/10.3109/17435390.2014.940408
Velyaev, Y. O., Sitak, A. P., Mitrokhin, N. A., Pokintelitsa, N. I., & Prokopenko, I. A. (2018). Рossibilities of application of amorphous silica obtained from domestic natural aluminosilicate raw materials as a food additive E551. Electronic scientific journal Innova, 4(13), 6-13. Retrieved from http://innova-journal.ru/issues/2018-4-13/01.pdf.
Winkler, H. C., Suter, M., & Naegeli, H. (2016). Critical review of the safety assessment of nano-structured silica additives in food. J Nanobiotechnol, 14, 44. https://doi.org/10.1186/s12951-016-0189-6
Younes, M., Aggett, P., Aguilar, F., Crebelli, R., Dusemund, B., Filipic, M. … Lambre, C. (2018). Scientific Opinion on the re-evaluation of silicon dioxide (E 551) as a food additive. EFSA Journal, 16(1), 5088, 70. https://doi.org/10.2903/j.efsa.2018.5088.
Переглядів анотації: 657 Завантажень PDF: 453