Стан кісткової тканини курчат-бройлерів за використання у раціоні кормових добавок, виготовлених із морських гідробіонтів

  • N. I. Dankevych Одеський державний аграрний університет, Одеса, Україна https://orcid.org/0000-0001-8927-5219
  • S. A. Tkachuk Національний університет біоресурсів і природокористування України, Київ, Україна https://orcid.org/0000-0002-6923-1793
  • A. P. Pylypenko Національний університет біоресурсів і природокористування України, Київ, Україна http://orcid.org/0000-0002-3154-8306
Ключові слова: курчата-бройлери, кормові добавки, морські гідробіонти, Кальцій, Фосфор, міцність, кісткова тканина

Анотація

Визначали загальний вміст Кальцію, неорганічного Фосфору та міцність кісткової тканини в середній частині діафіза великогомілкової кістки курчат-бройлерів за використання мінеральної і білково-мінеральної кормових добавок, виготовлених з чорноморської мідії і червоної водорості. Встановлено, що збільшення показників вмісту Кальцію і Фосфору, а також міцності кістки залежали від складу кормових добавок і способу їх згодовування.

Завантаження

##plugins.generic.usageStats.noStats##

Посилання

Cordell, D., Neset, T. S., & Prior, T. (2012). The phosphorus mass balance: identifying 'hotspots' in the food system as a roadmap to phosphorus security. Current Opinion in Biotechnology, 23(6), 839–845. DOI: 10.1016/j.copbio.2012.03.010

Cordell, D., Rosemarin, A., Schröder, J. J., & Smit, A. L. (2011). Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options. Chemosphere, 2011, 84(6), 747–58. DOI: 10.1016/j.chemosphere.2011.02.032

Dahlberg, A. K., Chen, V. L., Larsson, K., Bergman, A., & Asplund, L. (2016). Hydroxylated and methoxylated polybrominated diphenyl ethers in long-tailed ducks (Clangula hyemalis) and their main food, Baltic blue mussels (Mytilus trossulus × Mytilus edulis). Chemosphere, 144, 1475–1483. DOI: 10.1016/j.chemosphere.2015.10.012

de Jesus Raposo, M. F., de Morais, A. M., & de Morais, R. M. (2015). Marine polysaccharides from algae with potential biomedical applications. Marine Drugs, 13, 2967–3028. DOI: 10.3390/md13052967

Delezie, E., Bierman, K., Nollet, L., & Maerten, L. (2015). Impacts of calcium and phosphorus concentration, their ratio, and phytase supplementation level on growth performance, foot pad lesions, and hock burn of broiler chickens. Journal of Applied Poultry Research, 24(2), 115–126. DOI: 10.3382/japr/pfv011

Dibner, J. J., Richards, J. D., Kitchell, M. L., & Quiroz, M. A. (2007). Metabolic challenges and early bone development. Journal of Applied Poultry Research, 16, 126–137. DOI: 10.1093/japr/16.1.126

Driver, J. P., Pesti, G. M., Bakalli, R. I., & Edwards, H. M. Jr. (2006). The effect of feeding calcium- and phosphorus-deficient diets to broiler chickens during the starting and growing-finishing phases on carcass quality. Poultry Science, 85(11), 1939–1946. DOI: 10.1093/ps/85.11.1939

DSTU 4120-2002 Kombikormy povnoratsionni dlia silskohospodarskoi ptytsi. [Na zaminu HOST 18221-72, RST USSR 2000-90; chynnyi vid 2003-04-01]. Vyd. ofits. Kyiv : Derzhavnyi komitet Ukrainy z pytan tekhnichnoho rehuliuvannia ta spozhyvchoi polityky, 2003. 16 s. [In Ukrainian]

Fleming, R. H. (2008). Nutritional factors affecting poultry bone health. Proceedings of the Nutrition Society, 67, 177–183.

Frost, T. J., & Roland, D. A. Sr. (1991). The influence of various calcium and phosphorus levels on tibia strength and eggshell quality of pullets during peak production. Poultry Science, 70(4), 963–969. DOI: 10.3382/ps.0700963

Gerry, R.W. (1980). Ground dried whole mussels as a calcium supplement for chicken rations. Poultry Science, 59, 10, 2365-2368 DOI: 10.3382/ps.0592365

Gómez-Ordóñez, E., Jiménez-Escrig, A., & Rupérez, P. (2012). Effect of the red seaweed Mastocarpus stellatus intake on lipid metabolism and antioxidant status in healthy Wistar rats. Food Chemistry, 135, 806–811. DOI: 10.1016/j.foodchem.2012.04.138

Hemme, A., Spark, M., Wolf, P., Paschertz, H., & Kamphues, J. (2005). Effects of different phosphorus sources in the diet on bone composition and stability (breaking strength) in broilers. Journal of Animal Physiology and Animal Nutrition, 89(3-6), 129–133. DOI: 10.1111/j.1439-0396.2005.00539.x

Jönsson, L., & Holm, L. (2010). Effects of toxic and non-toxic blue mussel meal on health and product quality of laying hens. Journal of Animal Physiology and Animal Nutrition, 94(3), 405–412. DOI: 10.1111/j.1439-0396.2009.00922.x

Julian, R. J. (2005). Production and growth related disorders and other metabolic diseases of poultry. A review. Veterinary Journal, 169, 350–369. DOI: 10.1016/j.tvjl.2004.04.015

Kierończyk, B., Rawski, M., Józefiak, D., & Świątkiewicz, S. (2017). Infectious and non-infectious factors associated with leg disorders in poultry – a review. Annals of Animal Science, 17(3), 645–669. DOI: 10.1515/aoas-2016-0098

Knowles, T. G., Kestin, S. C., Haslam, S. M., Brown, S. N., Green, L. E., Butterworth, A., Pope, S. J., Pfeiffer, D., & Nicol, C. J. (2008). Leg disorders in broiler chickens: prevalence, risk factors and prevention. PLoS One, 3, e1545.

Mello, H. H. C., Gomes, P. C., Rostagno, H. S., Albino, L. F. T., de Oliveira, R. F. M., da Rocha, T. C., & Ribeiro, C. L. N. (2012). Requirement of available phosphorus by female broiler chickens keeping the calcium:available phosphorus ratio at 2:1. Revista Brasileira de Zootecnia, 41(11). 2329–2335. DOI: 10.1590/S1516-35982012001100005

Morris, J. P., Backeljau, T., & Chapelle, G. (2019). Shells from aquaculture: a valuable biomaterial, not a nuisance waste product. Reviews in Aquaculture, 11, 42–57. DOI: 10.1111/raq.12225

Neset, T. S., Cordell, D., Mohr, S., VanRiper, F., & White, S. (2016). Visualizing alternative phosphorus scenarios for future food security. Frontiers in Nutrition. 2016, 3, 47. eCollection. DOI: 10.3389/fnut.2016.00047

Odongo, N. E, Plaizier, J., van Straaten, P., & McBride, B. (2002). The effects of replacing dicalcium phosphate with Busumbu rock phosphate on performance and the mechanical properties of bone in growing chicks. Tropical Animal Health and Production, 34(4), 349–358. DOI: 10.1023/a:1015690920578

Onyango, E. M., Hester, P. Y., Stroshine, R., & Adeola, O. (2003). Bone densitometry as an indicator of percentage tibia ash in broiler chicks fed varying dietary calcium and phosphorus levels. Poultry Science, 82(11), 1787–1789. DOI: 10.1093/ps/82.11.1787

Rama Rao, S. V., Raju, M. V. L. N., Reddy, M. R., & Pavani, P. (2006). Interaction between dietary calcium and non-phytate phosphorus levels on growth bone mineralization and mineral excretion in commercial broilers. Animal Feed Science and Technology, 131, 133–148.

Rath, N. C., Huff, G. R., Huff, W. E., & Balog, J. M. (2000). Factorsregulating bone maturity and strength in poultry. Poultry Science, 79, 1024–1032. DOI: 10.1093/ps/79.7.1024

Saunders-Blades, J. L., MacIsaac, J. L., Korver, D. R., & Anderson, D. M. (2009). The effect of calcium source and particle size on the production performance and bone quality of laying hens. Poultry Science, 88(2), 338–353. DOI: 10.3382/ps.2008-00278

Scholz, R. W., Ulrich, A. E., Eilittä, M., & Roy, A. (2013). Sustainable use of phosphorus: a finite resource. Science of the Total Environment, 461–462, 799–803. DOI: 10.1016/j.scitotenv.2013.05.043

Shafey, T. M. (1993). Calcium tolerance of growing chickens: effect of ratio of dietary calcium to available phosphorus. World's Poultry Science Journal, 49(1), 5–18. DOI: 10.1079/WPS19930002

Sohail, S. S., & Roland, D. A. Sr. (2002). Influence of dietary phosphorus on performance of Hy-line W36 hens. Poultry Science, 81(1), 75–83. DOI: 10.1093/ps/81.1.75

Stenflo, J. (1991). Structure-function relationships of epidermal growth factor modules in vitamin K-dependent clotting factors. Blood, 78, 1637–1651. PMID: 1912552.

Świątkiewicz, S., & Arczewska-Wlosek, A. (2012). Bone quality characteristics and performance in broiler chickens fed diets supplemented with organic acids. Czech Journal of Animal Science, 57(4), 193–205. DOI: 10.17221/6004-cjas

Tkachuk, S. A., & Pasnichenko, O. S. (2017). Vikovi ta vydovi morfo-biomekhanichni zakonomirnosti trubchastykh kistok sviiskoi ptytsi : [monohrafiia]. Kyiv, 281 s. [In Ukrainian]

Tsurpal, I. A. (2005). Mekhanika materialiv i konstruktsii : Navchalnyi posibnyk dlia pidhotovky bakalavriv v ahrarnykh vyshchykh navchalnykh zakladakh II–IV rivniv akredytatsii z napriamiv «Mekhanizatsiia ta elektryfikatsiia silskoho hospodarstva» ta «Inzhenerna mekhanika» (spetsialnist «Mashyny ta obladnannia silskoho hospodarstva»). Kyiv : Vyshcha osvita, 367 s. [In Ukrainian]

Underwood, E. J., & Suttle, N. F. (1999). The mineral nutrition of livestock. 3 ed. New York: CAB International. 614 p.

Venäläinen, E., Valaja, J., & Jalava, T. (2006). Effects of dietary metabolisable energy, calcium and phosphorus on bone mineralisation, leg weakness and performance of broiler chickens. British Poultry Science, 47(3), 301–310. DOI: 10.1080/00071660600741776

Ventura, M. V. A., & da Silva, R. M. (2019). Bone problems caused by the deficiency of calcium and phosphorus in the feeding of broilers. Biomedical Journal of Scientific & Technical Research, 16(4), 12223–12226. DOI: 10.26717/BJSTR.2019.16.002886

Waldenstedt, L. (2006). Nutritional factors of importance for optimal leg health in broilers: A review. Animal Feed Science and Technology, 126, 291–307. DOI: 10.1016/j.anifeedsci.2005.08.008

Williams, B., Solomon, S., Waddington, D. Thorp, B., & Farquharson, C. (2000). Skeletal development in the meat-type chicken. British Poultry Science, 41(2), 141–149. DOI: 10.1080/713654918

Williams, B., Waddington, D., Solomon, S., & Farquharson, C. (2000). Dietary effects on bone quality and turnover, and Ca and P metabolism in chickens. Research in Veterinary Science, 69(1), 81–87. DOI: 10.1053/rvsc.2000.0392

Wilson, J. H. (1991). Bone strength of caged layers as affected by dietary calcium and phosphorus concentrations, reconditioning, and ash content. British Poultry Science, 32(3), 501–508. DOI: 10.1080/00071669108417374

Zhang, L., He, T., Li, M., Hu, J., & Piao, X. (2019). Effects of dietary calcium and phosphorus levels and supplementation of 25-hydroxycholecalciferol on performance and bone properties of broiler starters. Archives of Animal Nutrition, 73(6), 445–456. DOI: 10.1080/1745039X.2019.1667192


Переглядів анотації: 1033
Завантажень PDF: 748
Опубліковано
2020-05-20
Як цитувати