Вплив різних титрів бактеріофагів на кількість Staphylococcus aureus variant bovis
Анотація
Наведено результати досліджень динаміки популяції фаг-бактерія при використанні різних титрів бактеріофага SAvB14 та чутливої до нього культури S. aureus var. bovis. Встановлено, що чим вищий титр фагів, тим інтенсивніше прогресує фагова інфекція. При цьому внесення фага з титром 10-8 БУО/см3 ефективніше знищує S. аureus, ніж внесення фаголізату з меншим вмістом SAvB14.
Завантаження
Посилання
Barbu, E. M., Cady, K. C., & Hubby, B. (2016). Phage therapy in the era of synthetic biology. Cold Spring Harbor perspectives in biology, 8(10), a023879. DOI: 10.1101/cshperspect.a023879
Bhardwaj, S. B., Mehta, M., Sood, S., & Sharma, J. (2020). Isolation of a Novel Phage and Targeting Biofilms of Drug-Resistant Oral Enterococci. Journal of global infectious diseases, 12(1), 11–15. DOI: 10.4103/jgid.jgid_110_19
Bingham, R., Ekunwe, S. I., Falk, S., Snyder, L., & Kleanthous, C. (2000). The major head protein of bacteriophage T4 binds specifically to elongation factor Tu. Journal of Biological Chemistry, 275(30), 23219–23226. DOI: 10.1074/jbc.M002546200
Bondy-Denomy, J., Qian, J., Westra, E. R., Buckling, A., Guttman, D. S., Davidson, A. R., & Maxwell, K. L. (2016). Prophages mediate defense against phage infection through diverse mechanisms. The ISME journal, 10(12), 2854–2866. DOI: 10.1038/ismej.2016.79
Bouchart, F., Vidal, O., Lacroix, J. M., Spriet, C., Chamary, S., Brutel, A., & Hornez, J. C. (2020). 3D printed bioceramic for phage therapy against bone nosocomial infections. Materials Science and Engineering: C, 111, 110840. DOI: 10.1016/j.msec.2020.110840
Capparelli, R., Parlato, M., Borriello, G., Salvatore, P., & Iannelli, D. (2007). Experimental phage therapy against Staphylococcus aureus in mice. Antimicrobial agents and chemotherapy, 51(8), 2765–2773. DOI: 10.1128/AAC.01513-06
Chung, I. Y., Jang, H. J., Bae, H. W., & Cho, Y. H. (2014). A phage protein that inhibits the bacterial ATPase required for type IV pilus assembly. Proceedings of the National Academy of Sciences, 111(31), 11503–11508. DOI: 10.1073/pnas.1403537111
Fabijan, A. P., Lin, R. C., Ho, J., Maddocks, S., Zakour, N. L. B., & Iredell, J. R. (2020). Safety of bacteriophage therapy in severe Staphylococcus aureus infection. Nature microbiology, 1-8. 5, 465–472. DOI: 10.1038/s41564-019-0634-z
Geng, H., Zou, W., Zhang, M., Xu, L., Liu, F., Li, X., & Xu, Y. (2020). Evaluation of phage therapy in the treatment of Staphylococcus aureus-induced mastitis in mice. Folia Microbiologica, 65(2), 339–351. DOI: 10.1007/s12223-019-00729-9
Hobbs, Z., & Abedon, S. T. (2016). Diversity of phage infection types and associated terminology: the problem with ‘Lytic or lysogenic’. FEMS microbiology letters, 363(7), 1–8. DOI: 10.1093/femsle/fnw047
Horiuk, Y. V. (2019). Lytic Activity of Staphylococcal Bacteriophage on Different Biotypes of Staphylococcus aureus. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 21(94), 115–120. DOI: 10.32718/nvlvet9421
Horiuk, Y. V., Kukhtyn, M. D., Horiuk, V. V., & Mizyk,V. P. (2019). Effect of Temperature on the lytic activity of Bacteriophage PHAGE SAVB14, specific for STAPHYLOCOCCUS AUREUS VARIANT BOVIS. Veterinary Science, Technologies of Animal Husbandry and Nature Management, 4, 37–40. DOI: 0.31890/vttp.2019.04.07
Horiuk, Y.V. (2018). Fagotherapy of cows mastitis as an alternative to antibiotics in the system of obtaining environmentally safe milk. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 20(88), 42–47. DOI: 10.32718/nvlvet8807.
Horiuk, Yu. V., Kukhtyn, M.D., Perkiy, Y.B. & Horiuk, V.V. (2018). Resistance of the main pathogens of mastitis of cows to modern antimicrobial drugs. Science and Technology Bulletin of SRC for Biosafety and Environmental Control of AIC, 6(2), 49–53.
Horiuk, Yu.V., Kukhtyn, M.D., Perkiy, Yu.B., & Horiuk, V.V. (2018). Distribution of main pathogens of mastitis in cows on dairy farms in the western region of Ukraine. Scientific Messenger of Lviv National University of Veterinary Medicine and Biotechnologies, 20(83), 115–119. DOI: 10.15421/nvlvet8322
Jault, P., Leclerc, T., Jennes, S., Pirnay, J. P., Que, Y. A., Resch, G., & Schaal, J. V. (2019). Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. The Lancet Infectious Diseases, 19(1), 35–45. DOI: 10.1016/S1473-3099(18)30482-1
Kortright, K. E., Chan, B. K., Koff, J. L., & Turner, P. E. (2019). Phage therapy: a renewed approach to combat antibiotic-resistant bacteria. Cell host & microbe, 25(2), 219–232. DOI: 10.1016/j.chom.2019.01.014
Kukhtyn, M. D., Horyuk, Y. V., Horyuk, V. V., Yaroshenko, T. Y., Vichko, O. I., & Pokotylo, O. S. (2017). Biotype characterization of Staphylococcus aureus isolated from milk and dairy products of private production in the western regions of Ukraine. Regulatory Mechanisms in Biosystems, 8(3), 384–388. DOI: 10.15421/021759
Pires, D. P., Cleto, S., Sillankorva, S., Azeredo, J., & Lu, T. K. (2016). Genetically engineered phages: a review of advances over the last decade. Microbiol. Mol. Biol. Rev., 80(3), 523–543. DOI: 10.1128/MMBR.00069-15
Titze, I., & Krömker, V. (2020). Antimicrobial Activity of a Phage Mixture and a Lactic Acid Bacterium against Staphylococcus aureus from Bovine Mastitis. Veterinary Sciences, 7(1), 1–13. DOI: 10.3390/vetsci7010031
Varela-Ortiz, D. F., Barboza-Corona, J. E., González-Marrero, J., León-Galván, M. F., Valencia-Posadas, M., Lechuga-Arana, A. A., & Gutiérrez-Chávez, A. J. (2018). Antibiotic susceptibility of Staphylococcus aureus isolated from subclinical bovine mastitis cases and in vitro efficacy of bacteriophage. Veterinary research communications, 42(3), 243–250. DOI: 10.1007/s11259-018-9730-4
Wills, Q. F., Kerrigan, C., & Soothill, J. S. (2005). Experimental bacteriophage protection against Staphylococcus aureus abscesses in a rabbit model. Antimicrobial agents and chemotherapy, 49(3), 1220–1221. DOI: 10.1128/AAC.49.3.1220-1221.2005
Yen, M., Cairns, L. S., & Camilli, A. (2017). A cocktail of three virulent bacteriophages prevents Vibrio cholerae infection in animal models. Nature communications, 8(1), 1–7. DOI: 10.1038/ncomms14187
Переглядів анотації: 1173 Завантажень PDF: 698